Engenharia Civil

CONTRIBUIÇÃO PARA A REDUÇÃO DOS EFEITOS CAUSADOS PELA CHUVA, BASEADO NO CONCEITO USADO PARA A CONSTRUÇÃO DAS CIDADES ESPONJAS. ESTUDO DE CASO NA REGIÃO CENTRAL DE SÃO BERNARDO DO CAMPO - SP

Alunos: Mateus Fuad Sousa Kfouri – uniemkfouri@fei.edu.br / Nicholas Alves Mesquita – unienmesquita@fei.edu.br Orientadora: Alda Paulina dos Santos – alda@fei.edu.br

OBJETIVO

Os efeitos causados pelas fortes chuvas nos grandes centros urbanos gera desconforto e insegurança à população. Por isso, com o objetivo de mitigar esses efeitos, como os alagamentos e enchentes, foi criado um conceito em Pequim, no ano de 2012 chamado Cidades Esponja, que compõe diversas medidas para melhorar a permeabilidade da cidade. Medidas sustentáveis e inovadoras, a fim de receptar a água da chuva da maneira certa e respeitar o ciclo hídrico. O presente trabalho foi uma adaptação deste conceito para a região central de São Bernardo do Campo, respeitando as condições do contorno e causando o menor impacto social possível.

METODOLOGIA E RESULTADOS

1 – Pesquisa documental

Foi realizado pesquisas documentais sobre o histórico de alagamentos no Brasil, no sudeste, em São Paulo e em São Bernardo do campo. Após isso, foi realizado as pesquisas sobre o conceito das cidades esponja, bem como as medidas que compõe este conceito, para posteriormente serem analisados cuidadosamente com o objetivo de aplicar na região de estudo.

Esse conceito de cidade é capaz de integrar a gestão da água urbana em projetos de planeamento urbano. Deve ter o planejamento adequado e as estruturas para implementar, manter e adaptar os sistemas de infraestrutura para recolher, armazenar e tratar a água da chuva em excesso. Além disso, uma Cidade Esponja não só tem de ser capaz de lidar com água em excesso, mas também tem que ter capacidade de reutilizar a água da chuva para ajudar a mitigar os impactos de escassez e qualidade da água. (FOGEIRO, 2019). O conceito de cidades esponja surgiu após graves inundações em Pequim em 2012.

Telhado verde no edifício na Av. Paulista

Ambientalmente, as importantes atribuições do telhado verde são:

(i) contribuir para uma melhor qualidade do ar;

(ii) amenizar os efeitos da ilhade-calor nos centros urbanos; (iii) reduzir as vazões dos rios.

TELHADO VERDE

O telhado verde pode ser abertamente definido como um método onde se cultiva múltiplas vegetações sobre áreas superficiais, fachadas ou coberturas de edifícios.

Camadas de um telhado verde

CALÇAMENTO PERMEÁVEL

PARQUE ALAGÁVEL

projetados especialmente para

serem parcialmente alagados

durante alguns meses do ano,

em boa parte dos casos, esses

suspensas, com livre acesso o

ano todo. A parte térrea, alagável,

fica intransitável no período de

cheias, mas pode ser usadapelos

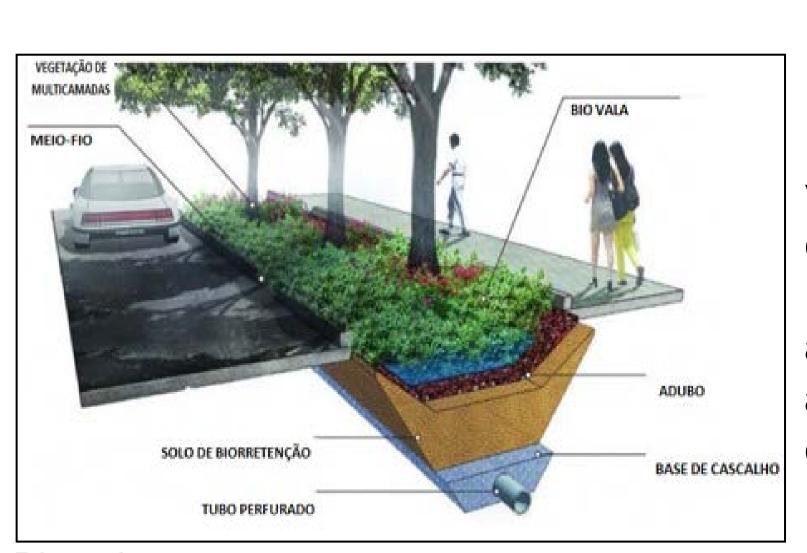
têm

parques

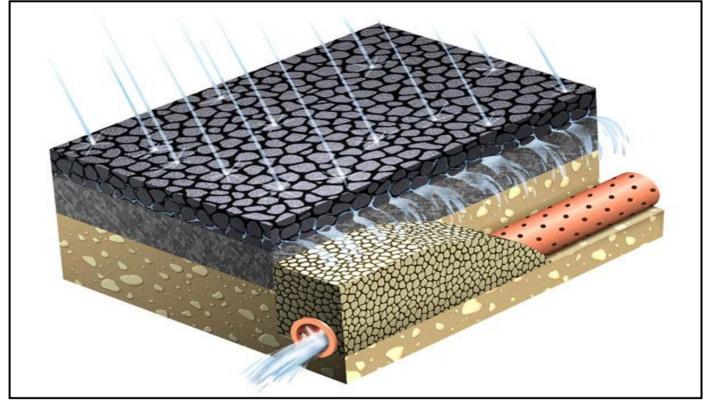
foram

passarelas

Esses


espaços

Os calçamentos permeáveis possuem cobertura de solo porosa, que permite que a água penetre solo. necessariamente precisar encanamento. A partir drenagem superficial a água passa por meio de sistemas de águas pluviais para ser levada a rios.



Calçamento permeável drenando água

A partir do momento que a água é absorvida pelo concreto permeável ela passa pela por outra camada permeável de granulometria menor e escorre para filtros ao longo da área permeável que encaminha a água decorrente das chuvas para córregos e rios.

Bio valas

Camadas de um calçamento permeável

BIO VALAS

valas ou valas com vegetação são uma forma linear de biorretenção usada para tratar parcialmente a qualidade da água, mitigar o potencial de alagamento e transportar a água da chuva para longe da infraestrutura crítica

Engenharia Civil

CONTRIBUIÇÃO PARA A REDUÇÃO DOS EFEITOS CAUSADOS PELA CHUVA, BASEADO NO CONCEITO USADO PARA A CONSTRUÇÃO DAS CIDADES ESPONJAS. ESTUDO DE CASO NA REGIÃO CENTRAL DE SÃO BERNARDO DO CAMPO - SP

Alunos: Mateus Fuad Sousa Kfouri – <u>uniemkfouri@fei.edu.br</u> / Nicholas Alves Mesquita – <u>unienmesquita@fei.edu.br</u>

Orientadora: Alda Paulina dos Santos – <u>alda@fei.edu.br</u>

2 – Aplicação do Conceito

Diante das problemáticas apresentadas e do conceito para mitigar os efeitos causados pelas chuva há a necessidade de se escolher um conceito que se adeque melhor a região de estudo. Diante disto foi feita uma matriz de decisão julgando os conceitos de 0 a 10. Cada conceito será avaliado com parâmetros mais importantes para a drenagem urbana multiplicados pelos seus respetivos pesos de importância: Execução da área de estudo (10%), eficiência sobre fortes chuvas (40%), complexidade (10%) e custo (40%). A matriz é exibida com as notas atribuídas ao conceito.

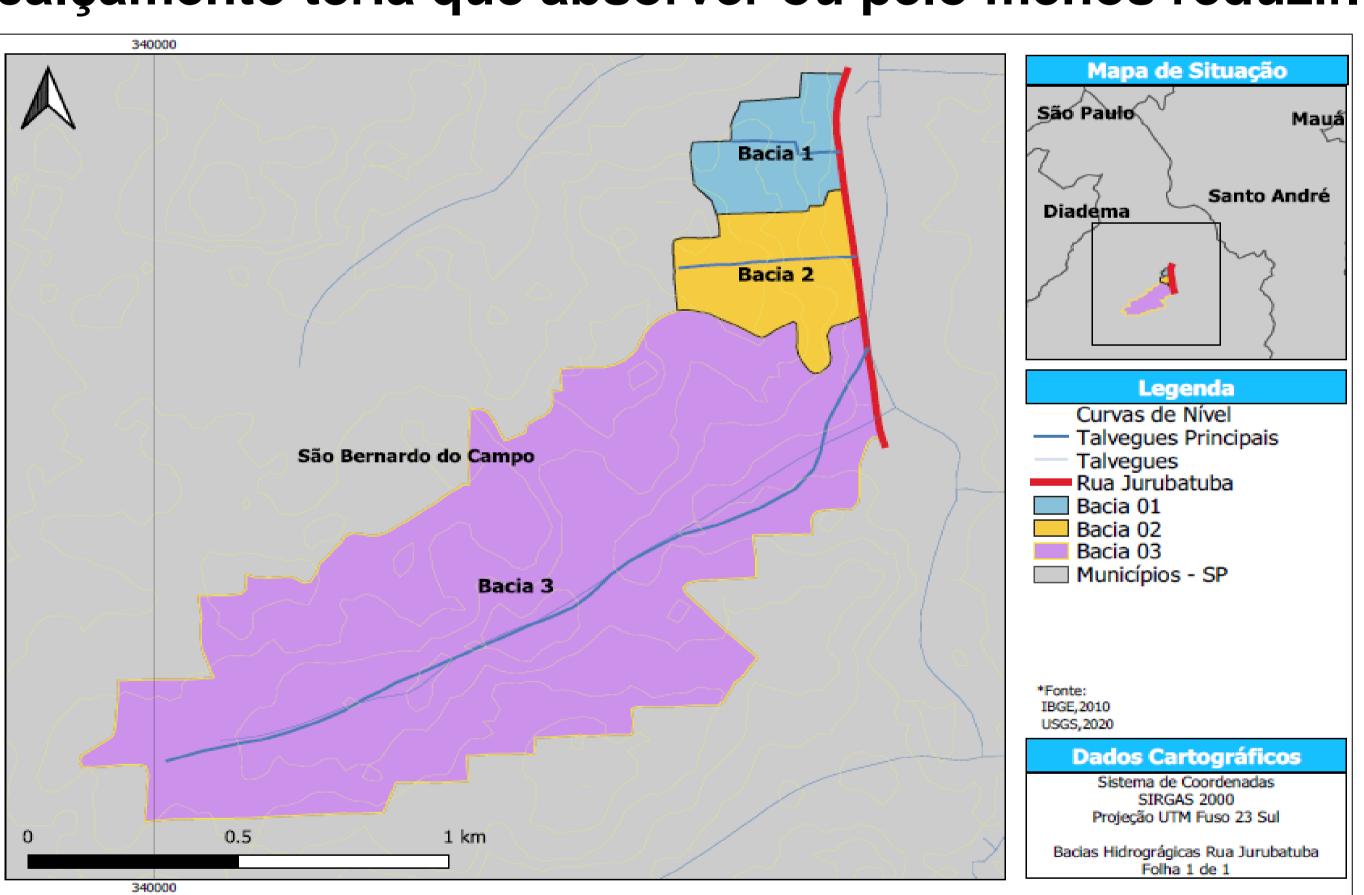
MATRIZ DE DECISÃO						
Conceito	Conceito Custo Complexidade Exe	Comployidada	Execução na área	Eficiencia		
Conceito		de estudo	Fortes chuvas			
Telhado verde	9	5	10	2		
Bio Valas	7	8	10	4		
Parques Alagáveis	0	2	2	10		
Praças Piscinas	2	2	4	8		
Concreto permeável	10	6	10	5		

Com os pesos atribuídos aos parâmetros e as notas julgadas de 0 a 10 à todos os conceitos, pode-se fazer a soma ponderada dos conceitos, encontrando os seguintes resultados:

Conceito	Total		
Calçamento Permeável	9,1		
Telhado verde	8,3		
Bio Valas	8		
Praças Piscinas	3,4		
Parques Alagáveis	2		

Com os valores lançados, pode-se observar que calçamento permeável obteve uma nota alta, portanto será escolhida como conceito de cidades

esponja a aplicação e execução do calçamento permeável na região de estudo.


Após a análise da matriz de decisão ficou clara quais itens seriam excluídos, entre eles foram: Praças-Piscinas, Parques Alagáveis, Telhado Verde e Bio Valas. As Praças-Piscinas e os Parques Alagáveis são obras de macrodrenagem que necessitam de espaço físico considerável além de um alto investimento para a desapropriação de comércios e algumas residências para se iniciar estas obras, ou seja, o impacto social que estas obras gerariam no campo de estudo para serem iniciadas seria grande dada as proporções destas obras visto que são obras de macrodrenagem.

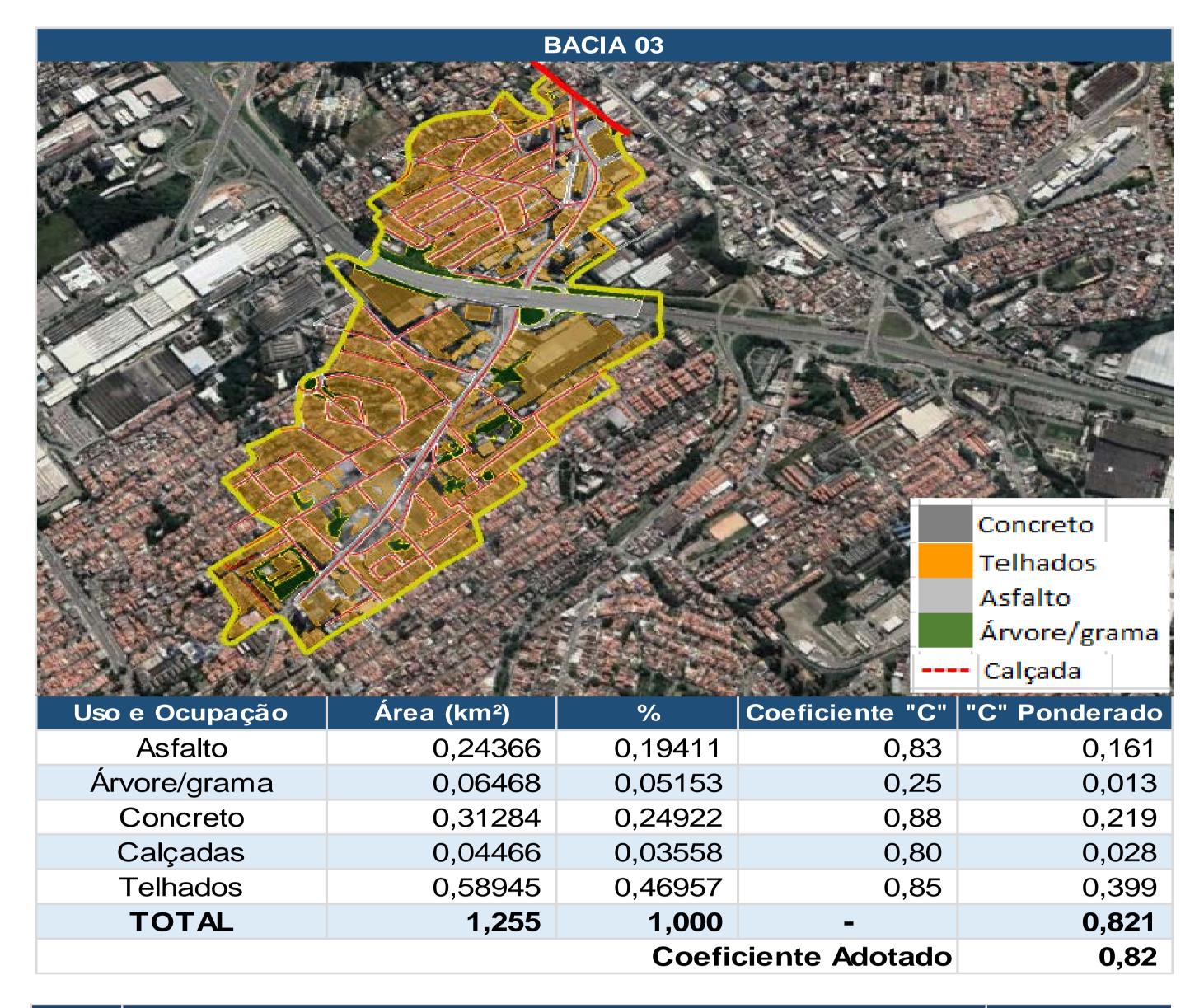
O Telhado Verde seria uma boa opção para a região pela facilidade de instalação de vegetação nas fachadas/ telhados dos edifícios, porém, para executar o método de maneira segura, necessitaria fazer uma análise estrutural e por consequência um reforço estrutural devido ao peso que os telhados verdes poderiam causar, além disto o mesmo acarretaria um custo para os donos dos edifícios que instalariam os telhados verdes nas fachadas e no terraço/ telhado dos prédios.

E por último as Bio valas não se aplicaria na região visto que necessitam de espaço físico (mesmo que relativamente pequeno) nas calçadas ou até mesmo na rua encostando nas guias e sarjetas das calçadas causando um possível transtorno no trânsito local pela rua ser de apenas três faixas com um grande fluxo de veículos transitando.

3 – Resultados

Após feito a escolha do método a ser implementado na região de estudo, foi feito um estudo hidrológico, para descobrir qual vazão o calçamento teria que absorver ou pelo menos reduzir.

Foram delimitadas três bacias hidrográficas onde foram retiradas duas das três informações para o calculo da vazão de projeto, o coeficiente de deflúvio e as respectivas áreas. Em seguida foi escolhida uma estação pluviométrica que fosse próxima a região e que tivesse dados sólidos (com a medição feita de maneira ininterrupta durante 20 anos) com isto pode ser calculada a vazão de projeto sendo uma delas com a maior vazão, desde modo, foi usado a vazão dessa bacia como a vazão do projeto, ou seja a bacia 03.



Engenharia Civil

CONTRIBUIÇÃO PARA A REDUÇÃO DOS EFEITOS CAUSADOS PELA CHUVA, BASEADO NO CONCEITO USADO PARA A CONSTRUÇÃO DAS CIDADES ESPONJAS. ESTUDO DE CASO NA REGIÃO CENTRAL DE SÃO BERNARDO DO CAMPO - SP

Alunos: Mateus Fuad Sousa Kfouri – <u>uniemkfouri@fei.edu.br</u> / Nicholas Alves Mesquita – <u>unienmesquita@fei.edu.br</u>

Orientadora: Alda Paulina dos Santos – <u>alda@fei.edu.br</u>

	CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS DAS BACIAS							
Número da Bacia	Área A (km²)	Comprim. L (km)		С	CN		T = 10 anos	
			tc (min)			Método	i (mm/h)	QP (m³/s)
	4.055	0.000	00.007	0.00			40.700	40.000
3	1,255	2,086	62,037	0,82		Método Racional	46,763	13,396

Porém, essa vazão de 13,39 m³/s calculada não se levou em conta os dispositivos de drenagem já existem, que são as bocas de lobo. Portanto, foi calculado as vazões d engolimento por essas bocas de lobo, chegando numa vazão de 10,41 m³/s.

Com isso, obteve-se uma vazão resultante de 2,98 m³/s. E por fim, feita a comparação do resultado com a implantação do calçamento permeável.

Foi testada a área variando de 1000 em 1000 metros quadrados, pois a vazão resultante e o preço de implantação está em função da área, logo pode ser observado que os valores de vazão resultante e preço são inversamente proporcionais quando se aumenta a área de calçamento permeável.

m ²	vazão (m³/s)	% melhorada		R\$
2000	2,96241738	0,76%	R\$	280.000,00
3000	2,95208238	1,10%	R\$	420.000,00
4000	2,94174737	1,45%	R\$	560.000,00
5000	2,93141237	1,80%	R\$	700.000,00
6000	2,92107736	2,14%	R\$	840.000,00
7000	2,91074235	2,49%	R\$	980.000,00
8000	2,90040735	2,83%	R\$	1.120.000,00
9000	2,89007234	3,18%	R\$	1.260.000,00
10000	2,87973734	3,53%	R\$	1.400.000,00
11000	2,86940233	3,87%	R\$	1.540.000,00
12000	2,85906732	4,22%	R\$	1.680.000,00

O comparativo feito resultou numa melhora de 4,22% e com uma redução de aproximadamente 100 litros por segundo, com um gasto aproximado de R\$ 1.680.000,00 de implantação.

4 – Conclusões

Uma conclusão que pode se chegar com a aplicação do método e a aplicação do conhecimento técnico o trabalho foi bem-sucedido tirando conclusões plausíveis a partir de dados estatísticos de chuvas e a aplicação da calçada permeável, porém pensando na viabilidade do possível projeto o mesmo não se torna atrativo pelo alto valor de implantação e pela pouca melhora nesta bacia desta região, porém o trabalho pode ser aplicado em grandes área de contribuição como fábricas, empreendimento de grandes proporções e etc. Foi observado que as cidades esponjam podem se tornar um grande potencial para o futuro tornando a cidade mais sustentável, verde e permeável respeitando o ciclo da água com um todo.

